INNATE IMMUNE RESPONSE OF INSECTS TO PATHOGENS - A REVIEW

  • ANALAVA BERA Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, WB, India.
  • RAJAT KUMAR MONDAL Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, WB, India.
  • AVIJIT DEY Department of Zoology, Ramakrishna Mission Vidyamandira, Belur Math, Howrah-711202, WB, India. https://orcid.org/0000-0001-7556-4693
Keywords: Insect immunity, innate immunity, cellular component, humoral component

Abstract

Insects are the largest existing group of animals under the Phylum Arthropoda. They are most diverse group of animals found in all the plausible habitats. Due to such diversity, different food habit they have to face a huge variety of parasites and pathogens, like bacteria, virus, fungus, protozoa, helminth, etc. Their immune system has played a vital role in their long-term survival in the evolutionary path. But like other invertebrates insects mainly rely on the innate immunity. Their innate components are highly specialized to combat against the parasites and pathogens. In this review article, we have described all the components and mechanisms of innate immune response of insect.

References

Shaukat Z, Liu D, Gregory S: Sterile inflammation in Drosophila. Mediators Inflamm. 2015; 2015:369286.

DOI: 10.1155/2015/369286

Stofanko M, Kwon SY, Badenhorst P: Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. PLoS One 2010; 5: e14051.

DOI: 10.1371/journal. pone.0014051

Schmidt O, Söderhäll K, Theopold U, Faye I: Role of adhesion in arthropod immune recognition. Annu. Rev. Entomol. 2010; 55:485–504.

DOI: 10.1146/annurev. ento.54.110807.090618

Meister M: Blood cells of Drosophila: cell lineages and role in host defence. Curr. Opin. Immunol. 2004; 16:10–15

Rosales C (ed.): Molecular Mechanisms of Phagocytosis. Georgetown, Texas: Landes Bioscience/Springer Science; 2005.

Schmidt O, Söderhäll K, Theopold U, Faye I: Role of adhesion in arthropod immune recognition. Annu. Rev. Entomol. 2010; 55:485–504.

DOI: 10.1146/annurev. ento.54.110807.090618

Carton Y, Frey F, Nappi AJ: Parasite‐induced changes in nitric oxide levels in Drosophila paramelanica. J. Parasitol. 2009; 95:1134–1141. DOI: 10.1645/GE‐2091.1

Rosales C: Fc receptor and integrin signaling in phagocytes. Signal Transduction 2007; 7:386–401.

Zhuang S, Kelo L, Nardi JB: Multiple α subunits of integrin are involved in cell‐mediated responses of the Manduca immune system. Dev. Comp. Immunol. 2008; 32:365– 379.

DOI: 10.1016/j.dci.2007.07.007

Nappi A, Poirié M, Carton Y: The role of melanization and cytotoxic by‐products in the cellular immune responses of Drosophila against parasitic wasps. Adv. Parasitol. 2009; 70:99–121.

DOI: 10.1016/S0065‐308X(09)70004‐1

Vlisidou I, Wood W: Drosophila blood cells and their role in immune responses. FEBS J. 2015; 282:1368–1382.

DOI: 10.1111/febs.13235

Nehme NT, Quintin J, Cho JH, Lee J, Lafarge MC, Kocks C, Ferrandon D: Relative roles of the cellular and humoral responses in the Drosophila host defense against three Grampositive bacterial infections. PLoS One 2011; 6:e14743.

DOI: 10.1371/journal.pone.0014743

Krem MM, Di Cera E: Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem. Sci. 2002; 27:67–74.

Ling E, Yu XQ: Prophenoloxidase binds to the surface of hemocytes and is involved in hemocytemelanization in Manduca sexta. Insect Biochem. Mol. Biol. 2005; 35:1356– 1366.

DOI: 10.1016/j.ibmb.2005.08.007

Marmaras VJ, Lampropoulou M: Regulators and signalling in insect haemocyte immunity. Cell Signal. 2009; 21:186–195.

Zhao F, Stanley D, Wang Y, Zhu F, Lei CL: Eicosanoids mediate nodulation reactions to a mollicute bacterium in larvae of the blowfly, Chrysomyamegacephala. J. Insect Physiol. 2009; 55:192–196.

DOI: 10.1016/j.jinsphys.2008.10.018

Bao YY, Xue J, Wu WJ, Wang Y, Lv ZY, Zhang CX: An immune‐induced reeler protein is involved in the Bombyx mori melanization cascade. Insect Biochem. Mol. Biol. 2011; 41:696–706.

DOI: 10.1016/j.ibmb.2011.05.001

Cao X, He Y, Hu Y, Wang Y, Chen YR, Bryant B, Clem RJ, Schwartz LM, Blissard G, Jiang H: The immune signaling pathways of Manduca sexta. Insect Biochem. Mol. Biol. 2015; 62:64–74.

DOI: 10.1016/j.ibmb.2015.03.006

Imler JL, Bulet P: Antimicrobial peptides in Drosophila: structures, activities and gene regulation. Chem. Immunol. Allergy. 2005; 86:1–21.

Lee YS, Yun EK, Jang WS, Kim I, Lee JH, Park SY, Ryu KS, Seo SJ, Kim CH, Lee IH: Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect Mol. Biol. 2004; 13:65–72.

Volkoff AN, Rocher J, d’Alençon E, Bouton M, Landais I, Quesada‐Moraga E, Vey A, Fournier P, Mita K, Devauchelle G: Characterization and transcriptional profiles of three Spodopterafrugiperda genes encoding cysteine‐rich peptides. A new class of defensin‐like genes from lepidopteran insects? Gene 2003; 319:43–53.

Bulet P, Stöcklin R: Insect antimicrobial peptides: structures, properties and gene regulation. Protein Pept. Lett. 2005; 12:3–11.

Steiner H, Hultmark D, Engström A, Bennich H, Boman HG: Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 1981; 292:246–248.

Gobbo M, Biondi L, Filira F, Gennaro R, Benincasa M, Scolaro B, Rocchi R: Antimicrobial peptides: synthesis and antibacterial activity of linear and cyclic drosocin and apidaecin 1b analogues. J. Med. Chem. 2002; 45:4494–4504.

Engström P, Carlsson A, Engström A, Tao ZJ, Bennich H: The antibacterial effect of attacins from the silk moth Hyalophora cecropia is directed against the outer membrane of Escherichia coli. EMBO J. 1984; 3:3347–3351.

Bang K, Park S, Yoo JY, Cho S: Characterization and expression of attacin, an antibacterial protein‐encoding gene, from the beet armyworm, Spodopteraexigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Mol. Biol. Rep. 2012; 39:5151–5159.

DOI: 10.1007/ s11033‐011‐1311‐3

Hwang J, Kim Y: RNA interference of an antimicrobial peptide, gloverin, of the beet armyworm, Spodopteraexigua, enhances susceptibility to Bacillus thuringiensis. J. Invertebr. Pathol. 2011; 108:194–200.

DOI: 10.1016/j.jip.2011.09.003

Xu XX, Zhong X, Yi HY, Yu XQ: Manduca sextaGloverin binds microbial components and is active against bacteria and fungi. Dev. Comp. Immunol. 2012; 38:275–284.

DOI: 10.1016/j.dci.2012.06.012

Wang Q, Liu Y, He HJ, Zhao XF, Wang JX: Immune responses of Helicoverpaarmigera to different kinds of pathogens. BMC Immunol. 2010; 11:9.

DOI: 10.1186/1471‐2172‐11‐9

Axén A, Carlsson A, Engström A, Bennich H: Gloverin, an antibacterial protein from the immune hemolymph of Hyalophora pupae. Eur. J. Biochem. 1997; 247:614–619.

Moreno‐Habel DA, Biglang‐awa IM, Dulce A, Luu DD, Garcia P, Weers PM, HaasStapleton EJ: Inactivation of the budded virus of Autographacalifornica M nucleopolyhedrovirus by gloverin. J. Invertebr. Pathol. 2012; 110:92–101.

DOI: 10.1016/j. jip.2012.02.007

Zhao HW, Zhou, Haddad GG: Antimicrobial peptides increase tolerance to oxidant stress in Drosophila melanogaster. J. Biol. Chem. 2011; 286:6211–6218.

DOI: 10.1074/jbc. M110.181206

Fehlbaum P, Bulet P, Michaut L, Lagueux M, Broekaert WF, Hetru C, Hoffmann JA: Insect immunity. Septic injury of Drosophila induces the synthesis of a potent antifungal peptide with sequence homology to plant antifungal peptides. J. Biol. Chem. 1994; 269:33159–33163.

Zhang ZT, Zhu SY: Drosomycin, an essential component of antifungal defence in Drosophila. Insect Mol. Biol. 2009; 18:549–556. doi: 10.1111/j.1365‐2583.2009.00907.x

Tian C, Gao B, Rodriguez MdC, Lanz‐Mendoza H, Ma B, Zhu S: Gene expression, antiparasitic activity, and functional evolution of the drosomycin family. Mol. Immunol. 2008; 45:3909–3916.

DOI: 10.1016/j.molimm.2008.06.025

Levashina EA, Ohresser S, Bulet P, Reichhart JM, Hetru C, A HJ: Metchnikowin, a novel immune‐inducible proline‐rich peptide from Drosophila with antibacterial and antifungal properties. Eur. J. Biochem. 1995; 233:694–700.

Levashina EA, Ohresser S, Lemaitre B, Imler JL: Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin. J. Mol. Biol. 1998; 278:515–527.

DOI: 10.1006/jmbi.1998.1705

Rahnamaeian M, Langen G, Imani J, Khalifa W, Altincicek B, von Wettstein D, Kogel KH, Vilcinskas A: Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J. Exp. Bot. 2009; 60:4105–4114.

DOI: 10.1093/ jxb/erp240

Wu Q, Patočka J, Kuča K: Insect Antimicrobial Peptides, a Mini Review. Toxins (Basel). 2018; 10(11): 461.

Shrestha S, Kim YJ: Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodopteraexigua. Biosci. Biotechnol. Biochem. 2009; 73:2077–2084.

DOI: 10.1271/bbb.90272

Gandhe AS, John SH, Nagaraju J: Noduler, a novel immune up‐regulated protein mediates nodulation response in insects. J. Immunol. 2007; 179:6943–6951.

Strand MR: The insect cellular immune response. Insect Science 2008; 15:1–14.

Browne N, Heelan M, Kavanagh K: An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 2013; 4:597–603.

DOI: 10.4161/viru.25906

Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA: Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 1996; 4:431–443.

Manaka J, Kuraishi T, Shiratsuchi A, Nakai Y, Higashida H, Henson P, Nakanishi Y: Draper‐mediated and phosphatidylserine‐independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J. Biol. Chem. 2004; 279:48466–48476.

DOI: 10.1074/jbc.M408597200

Kurucz E, Márkus R, Zsámboki J, Folkl‐Medzihradszky K, Darula Z, Vilmos P, Udvardy A, Krausz I, Lukacsovich T, Gateff E et al.: Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr. Biol. 2007; 17:649–654.

DOI: 10.1016/j.cub.2007.02.041

Altincicek B, Stotzel S, Wygrecka M, Preissner KT, Vilcinskas A: Host‐derived extracellular nucleic acids enhance innate immune responses, induce coagulation, and prolong survival upon infection in insects. J. Immunol. 2008; 181:2705–2712.

Buchon N, Silverman, Cherry S: Immunity in Drosophila melanogaster—from microbial recognition to whole‐organism physiology. Nat. Rev. Immunol. 2014; 14:796–810.

DOI: 10.1038/nri3763

Kurata S: Peptidoglycan recognition proteins in Drosophila immunity. Dev. Comp. Immunol. 2014; 42:36–41.

DOI: 10.1016/j.dci.2013.06.006

Dziarski R, Gupta D: Mammalian PGRPs: novel antibacterial proteins. Cell. Microbiol. 2006; 8:1059–1069.

DOI: 10.1111/j.1462‐5822.2006.00726.x

Dziarski R, Gupta D: Review: Mammalian peptidoglycan recognition proteins (PGRPs) in innate immunity. Innate Immun. 2010; 16:168–174.

DOI: 10.1177/1753425910366059

Charroux B, Rival T, Narbonne‐Reveau K, Royet J: Bacterial detection by Drosophila peptidoglycan recognition proteins. Microbes Infect. 2009; 11:631–636.

DOI: 10.1016/j. micinf.2009.03.004

Royet J, Gupta D, Dziarski R: Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat. Rev. Immunol. 2011; 11:837–851.

DOI: 10.1038/ nri3089

Pal S, Wu LP: Lessons from the fly: pattern recognition in Drosophila melanogaster. Adv, Exp. Med. Biol. 2009; 653:162–174.

Jiang H, Ma C, Lu ZQ, Kanost MR: Beta‐1,3‐glucan recognition protein‐2 (betaGRP‐2) from Manduca sexta; an acute‐phase protein that binds beta‐1,3‐glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. Insect Biochem. Mol. Biol. 2004; 34:89–100.

Wang Y, Sumathipala N, Rayaprolu S, Jiang H: Recognition of microbial molecular patterns and stimulation of prophenoloxidase activation by a β‐1,3‐glucanase‐related protein in Manduca sexta larval plasma. Insect Biochem. Mol. Biol. 2011; 41:322–331.

DOI: 10.1016/j.ibmb.2011.01.010

Pauchet Y, Freitak D, Heidel‐Fischer HM, Heckel DG, Vogel H: Immunity or digestion: glucanase activity in a glucan‐binding protein family from Lepidoptera. J. Biol. Chem. 2009; 284:2214–2224.

DOI:10.1074/jbc.M806204200

Rosales C, O’Brien V, Kornberg L, Juliano RL: Signal transduction by cell adhesion receptors. Biochim. Biophys. Acta 1995; 1242:77–98.

Gandhe AS, Arunkumar KP, John SH, Nagaraju J: Analysis of bacteria‐challenged wild silkmoth, Antheraeamylitta (lepidoptera) transcriptome reveals potential immune genes. BMC Genomics. 2006; 7:184.

DOI: 10.1186/1471‐2164‐7‐184

Eum JH, Seo YR, Yoe SM, Kang SW, Han SS: Analysis of the immune‐inducible genes of Plutellaxylostella using expressed sequence tags and cDNA microarray. Dev. Comp. Immunol. 2007; 31:1107–1120.

DOI: 10.1016/j.dci.2007.02.002

Bao Y, Yamano Y, Morishima I: Induction of hemolin gene expression by bacterial cell wall components in eri‐silkworm, Samiacynthiaricini. Comp. Biochem. Physiol. Part B. Biochem. Mol. Biol. 2007; 146:147–151.

DOI: 10.1016/j.cbpb.2006.10.092

Eleftherianos I, Gökçen F, Felföldi G, Millichap PJ, Trenczek TE, ffrench‐Constant RH, Reynolds SE: The immunoglobulin family protein Hemolin mediates cellular immune responses to bacteria in the insect Manduca sexta. Cell. Microbiol. 2007; 9:1137–1147.

DOI: 10.1111/j.1462‐5822.2006. 00855.x

Yu X‐Q, Kanost MR: Immulectin‐2, a Lipopolysaccharide‐specific lectin from an insect, Manduca sexta, is induced in response to Gram‐negative bacteria. J. Biol. Chem. 2000; 275:37373–37381.

DOI:10.1074/jbc.M003021200

Yu XQ, Ling E, Tracy ME, Zhu Y: Immulectin‐4 from the tobacco hornworm Manduca sexta binds to lipopolysaccharide and lipoteichoic acid. Insect Mol. Biol. 2006; 15:119– 128.

DOI: 10.1111/j.1365‐2583.2006.00618.

Watanabe A, Miyazawa S, Kitami M, Tabunoki H, Ueda K, Sato R: Characterization of a novel C‐type lectin, Bombyx mori multibinding protein, from the B. mori hemolymph: mechanism of wide‐range microorganism recognition and role in immunity. J. Immunol. 2006; 177:4594–4604.

Shin SW, Park DS, Kim SC, Park HY: Two carbohydrate recognition domains of Hyphantriacunea lectin bind to bacterial lipopolysaccharides through O‐specific chain. FEBS Lett. 2000; 467:70–74.

Pham LN, Dionne MS, Shirasu‐Hiza M, Schneider DS: A specific primed immune response in Drosophila is dependent on phagocytes. PLoS Pathog. 2007; 3:1–8.

DOI: 10.1371/journal.ppat.0030026

Jiang H, Vilcinskas A, Kanost MR: Immunity in lepidopteran insects. Adv. Exp. Med. Biol. 2010; 708:181–204.

Kingsolver MB, Huang Z, Hardy RW: Insect antiviral innate immunity: pathways, effectors, and connections. J. Mol. Biol. 2013; 425:4921–4936.

DOI: 10.1016/j.jmb.2013.10.006

Lemaitre B, Hoffmann JA: The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 2007; 25:697–743.

DOI:10.1146/annurev.immunol.25.022106.141615

Valanne S, Wang JH, Rämet M: The Drosophila Toll signaling pathway. J. Immunol. 2011; 186:649–656.

DOI: 10.4049/jimmunol.1002302

Lindsay SA, Wasserman SA: Conventional and non‐conventional Drosophila Toll signaling. Dev. Comp. Immunol. 2014; 42:16–24.

DOI: 10.1016/j.dci.2013.04.011

Kleino A, Silverman N: The Drosophila IMD pathway in the activation of the humoral immune response. Dev. Comp. Immunol. 2014; 42:25–35. doi: 10.1016/j.dci.2013.05.014

Myllymäki H, Valanne S, Rämet M: The Drosophila imdsignaling pathway. J. Immunol. 2014; 192:3455–3462.

DOI: 10.4049/jimmunol.1303309

Ashok Y: Drosophila toll pathway: the new model. Sci. Signal. 2009; 2:jc1.

DOI: 10.1126/ scisignal.252jc1

Lemaitre B, Kromer‐Metzger E, Michaut L, Nicolas E, Meister M, Georgel P, Reichhart JM, Hoffmann JA: A recessive mutation, immune deficiency (imd), defines two distinct control pathways in the Drosophila host defense. Proc. Natl. Acad. Sci. U S A 1995; 92:9465–9469.

Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA: The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973–983.

Myllymäki H, Rämet M: JAK/STAT pathway in Drosophila immunity. Scand. J. Immunol. 2014; 79:377–385.

DOI: 10.1111/sji.12170

O’Shea J, Plenge R: JAK and STAT signaling molecules in immunoregulation and immunemediated disease. Immunity 2012; 36:542–550.

DOI: 10.1016/j.immuni.2012.03.014

Carlos Rosales: Cellular and Molecular Mechanisms of Insect Immunity. Insect Physiology and Ecology. 2017.

DOI: 10.5772/67107

Branzk N, Papayannopoulos V: Molecular mechanisms regulating NETosis in infection and disease. Semin. Immunopathol. 2013; 35:513–530.

DOI: 10.1007/s00281‐013‐0384‐6

Brinkmann V, Zychlinsky A: Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 2012; 198:773–783.

DOI: 10.1083/jcb.201203170

Robb CT, Dyrynda EA, Gray RD, Rossi AG, Smith VJ: Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon. Nat. Commun. 2014; 5:4627.

DOI: 10.1038/ncomms5627

Ratheesh A, Belyaeva V, Siekhaus DE: Drosophila immune cell migration and adhesion during embryonic development and larval immune responses. Curr. Opin. Cell Biol. 2015; 36:71–79.

DOI: 10.1016/j.ceb.2015.07.003

Published
2021-06-25
How to Cite
BERA, A., MONDAL, R. K., & DEY, A. (2021). INNATE IMMUNE RESPONSE OF INSECTS TO PATHOGENS - A REVIEW. UTTAR PRADESH JOURNAL OF ZOOLOGY, 42(14), 1-14. Retrieved from https://mbiimph.com/index.php/UPJOZ/article/view/2246
Section
Review Article